Noninvasive estimation of electrical properties from magnetic resonance measurements via global Maxwell tomography and match regularization

Abstract

In this paper, we introduce global Maxwell tomography (GMT), a novel volumetric technique that estimates electric conductivity and permittivity by solving an inverse scattering problem based on magnetic resonance measurements. Methods: GMT relies on a fast volume integral equation solver, MARIE, for the forward path, and a novel regularization method, match regularization, designed specifically for electrical property estimation from noisy measurements. We performed simulations with three different tissue-mimicking numerical phantoms of different complexity, using synthetic transmit sensitivity maps with realistic noise levels as the measurements. We performed an experiment at 7 T using an eight-channel coil and a uniform phantom. Results: We showed that GMT could estimate relative permittivity and conductivity from noisy magnetic resonance measurements with an average error as low as 0.3% and 0.2%, respectively, over the entire volume of the numerical phantom. Voxel resolution did not affect GMT performance and is currently limited only by the memory of the graphics processing unit. In the experiment, GMT could estimate electrical properties within 5% of the values measured with a dielectric probe. Conclusion: This work demonstrated the feasibility of GMT with match regularization, suggesting that it could be effective for accurate.

Publication
IEEE Trans. Biomed. Eng., vol. 67, no. 1, pp. 3-15, Jan. 2020